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ABSTRACT

ri

An explicit formulation of the concept of non-informative prior

distribution over a finite number of possibilities is given. Numerical

examples show that the formulation leads to non-trivial results. An

information inequality is established to assure the validity of numerical

results. The relation of the present work to other works on the same subject

is briefly discussed.
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SIGNIFICANCE AND EXPLANATION

The concept of non-informative prior distribution has been useful in

developing Bayesian procedures for practical applications. However, rigorous

analysis of the concept in the case of finite number of possible alternatives

has never been sufficiently developed. In this paper a new definition, the

minimum information prior distribution, is introduced based on the predictive

point of view. The characteristic of the minimum information prior

distribution is analyzed numerically and non-trivial examples of determination

of prior probability distribution over a finite number of possibilities are

reported.

~/

The responsibility for the wording and views expressed in this escrptive

summary lies with MRC, and not with the author of this report.

* ** *~,*. . -.



ON MINIMUM INFORMATION PRIOR DISTRIBUTIONS

Hirotugu Akaike*

1. INTRODUCTION

In a practical application of the Bayes procedure the available prior

information is not usually sufficient to completely specify the prior

distribution. This often leads to the consideration of another prior

distribution, the hyperprior distribution, over a set of possible prior

distributions. The process may then be repeated indefinitely by considering a

prior distribution over a set of possible prior distributions, until we come

to the point where no more information is available to continue the process.

The concept of non-informative or ignorance prior distribution has been

developed to serve in this type of situation.

The ignorance prior distribution developed by Jeffreys (1946) is well-

known. However, its definition is based on the concept of invariance of the

distribution by the transformation of the parameter and its application is

limited to the case where the family of possible data distributions is

continuously parametrized. Lindley (1956) applied the Shannon entropy to

develop an information theoretic analysis of the structure of Bayesian

4modeling. This work prompted the works by Zellner (1977) and Bernardo (1979)

on the definition of the least informative prior distribution based on some

deinitions of the amount of information. For an extensive reference on the

* The Institute of Statistical Mathematics, Tokyo, Japan.
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literature on non-informative prior distributions readers are referred to

Bernardo (1979).

In the present paper we consider the basic problem of specifying a prior

distribution over a finite number of data distributions when no further prior

information is available. Coventionally the uniform distribution which

allocates equal probability to each data distribution is considered to be a

. reasonable choice in such a situationj see, for example, Cox and Hinkley

. (1974, p. 376). The analysis of Bernardo (1979) also leads to this prior

distribution. In our approach we define the mimimum information prior

distribution as the prior distribution which "let the data speak most" in

predicting the behavior of a future observation which is similar in nature to

the present data. Such a prior distribution is obtained by keeping the

*simultaneous distribution of the present and future observations as far away

as possible from the state of independence. The deviation from the

independence is measured by the Kullback-Leibler information number.

Our analysis shows that the uniform distribution is a reasonable choice

' only when the possible data distributions do not show significant overlap.

This is the situation where the likelihoods can clearly discriminate the

hypotheses, a situation where the Bayesian modeling is practically

unnecessary. Numerical results show that when the overlap of the data

distributions becomes significant the optimal choice of the prior distribution

*: depends critically on the mutual relation of the data distributions. These

*: numerical examples constitute the first example of determination of non-

trivial non-informative prior distributions over finite possibilities. A

newly obtained information inequality assures the validity of numerically

obtained minimum information prior distributions.

Much remains to be done on the theoretical analysis of the minimum
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information prior distribution. However, the numerical examples clearly show

that the concept may find direct applications in practical problems where the

data distributions can be lumped into finite number of possibilities.

Comparison of the present definition with other similar definitions in briefly

discussed in the final section.

2. DEFINITION OF THE MINIMUM INFORMATION PRIOR DISTRIBUTION

Consider a set of data distributions {f (*)} (k - 1,2,...K). The

simultaneous distribution of the present and future observations x and y

is defined by

K

p(y,x) k 1 fk(y)fk(x)wvk

where wk  denotes the prior probability of the kth distribution fk(*).

The deviation of this simultaneous distribution from the state of independence

is measured by the Kullback-Leibler information (Kullback and Leibler, 1951)

I(w) .ffp(y,x, log(p(y,x) )dy dxp(y)p(x)}

where p() f k Ow k

The quantity I(w) is non-negative and becomes zero when

p(y,x) - p(y)p(x). In this case we have p(ylx) - p(y), where p(ylx)

denotes the probability density of y conditional on x, and the structure

defined by ifk(Y)fk(x wk}  does not allow any transmission of information

from the present observation x to the expected behavior of the future

observation y. This represents the situation where all the relevant

information about y is represented by f k(y)) and (w k. Since the
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specification of the prior distribution w ( (wk} has to be done before the
k

observation of x the above specification of w is acceptable only when we

have complete information on the behavior of y.

When we are not confident in uniquely specifying a prior distribution we

may consider a set of possible w's. However, this necessitates the

introduction of a prior distribution over the possible prior distributions and

eventually leads to the infinite digression of searching for prior distri-

butions of prior distributions. One strategy to stop this digression is to

introduce a prior distribution which is least prejudiced against every

possibility. The prior distribution discussed in the preceding paragraph for

which p(y,x) - p(y)p(x) holds can be considered as maximally prejudiced, or

informative, in the sense that no further observation of x can influence on

-: the inference of y. If this interpretation is accepted then it is natural to

consider the prior distribution with the corresponding probability distri-

* bution p(y,x) furthest away from p(y)p(x) as the least informative. This

observation leads to the definition of the minimum information prior distri-

-" bution: we call a prior distribution (wk) the minimum information prior

distribution, with respect to {fk (0), when it gives the maximum of I(w).

In the rest of the paper, unless stated otherwise, it is tacitly assumed that

the data distributions fk(x) are mutually absolutely continuous.

3. SOME ANALYSIS OF 1(w)

The basic criterion 1(w) can be represented as

Ilw) Shannon entropy of pw(y)pwCx)

-Shannon entropy of pw(YX),

where pw (x) and pw(y,x) respectively denote p(x) and p(y,x) defined by

-4-
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the prior distribution w and the Shannon entropy of a probability

distribution p(z) is defined by - f p(z)log p(z)dz. For the purpose of

comparison of distributions the Shannon entropy may be considered as a measure

of deviation from the uniform distribtion. Thus the above representation of

1(w) shows that the minimum information prior distribution that maximizes

I(w) will maximize the dependence between x and y, keeping the marginal

distribution pw(x) as close to the uniform distribution as possible.

In the exceptional situation where the data distributions are completely

separated, i.e. f k(x)f (x) - 0 for k * J, I(w) reduces to

-I wk log Wk, the Shannon entropy of the prior distribution w. This is

maximized at wk - I/K. This shows that when the data distributions are well

separated the uniform prior distribution will provide a good approximation to

the minimum information prior distribution.

When some of the data distributions show significant overlap we can

expect that the solution will no longer be close to the uniform

distribution. Since no single wk can come close to 1, as this will

minimize I(w), we can further expect that some wk's will be forced to go

down to zero and a distribution in a lower dimensional space of w will

appear as the solution. The numerical examples of the next section show the

validity of these expectations.

If the concavity of I(w) is shown that will assure the validity of the

minimum information prior distribution obtained by a numerical procedure based

on a local search for the maximum of Iw). Consider a prior distribution

w - au + (1-a)v defined by a pair of prior distributions u and v and

ci (0 4 Q 4 1). Denote I(w) by I(a). The concavity of I(w) for general

w holds if it holds that
1(0) + (dI) M(1)

d- a=0
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for any pair of u and v. This inequality reduces to

U pY (y,X) 1v (Y ~yX)1
fPu(1 x)log V (y)p uJ dy dx f pu(y, x)log pv (Y)p ( dY dx

which is equivalent to

I (ppP P)Ilu'p v )  (pPu0 pPvP ,

where I(q,p) -ff q(y,x)log(q(y,x)/p(y,x))dy dx and pupu(y,x) denotes

PulY)PulX).

This last inequality is an information inequality that shows that

Pv(y)Pv(X) is more sensitive to the variation of v than Pv(y,x),

i.e., an observation from pv(y)pv(x) is more informative about v than that

from pv(y,x). To prove the inequality we consider the minimum of

- I(qq,pp) ff q(yx)log(q(y)q(x)/(p(y)p(x))) dy dx for a given p(y,x),

under the condition I(q,p) - 0, a positive constant. Here q(y,x) and

p(y,x) denote arbitrary symmetric probability density functions with repect

* to the measure dy dx and q(*) and p(o) denote corresponding marginal

distributions. The minimization leads to the variational analysis of

R(q) I(qq,pp) + A(I(q,p) - 0) + Ij(ff q(y,x)dy dx - 1),

*i where X and )j are Lagrange multipliers. By considering a small

perturbation r(y,x)(- r(x,y)) of q(y,x) it can be seen that the stationary

solution must satisfy the relation ff r(y,x)(log(q(y)q(x)/(p(y)p(x))} +

4 log(q(y,x)/p(y,x))]dy dx - 0. This shows that we have an equality
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log(q(y,x)/p(y,x)) - C log {q(y)q(x)/(p(y)p(x))} and accordingly I(q,p) - C

I(qq,pp), where C -- -1 > 0. Due to the convexity of I(qqpp) with

respect to q the stationary solution gives the minimum of I(qq,pp) under

the given constraints.

Since we have

ff q(yx)dy dx - If ) p(y,x)dy dx

c must be equal to or less than 1, if q(y)/p(y) and q(x)/p(x) are

positively correlated under p(yex). In this case I(qp) 4 I(qqpp) holds

for any q. For the particular choice p(yx) - pv(yx) it can easily be

seen that the positivity of the correlation holds for any symmetric q(yx).

This completes the proof of the information inequality.

4. NUMERICAL INVESTIGhTIO1

For the simplicity of numerical analysis we consider the case where the

variables x and y take only integral values 0,1,2...,I. The quantities

useful for the numerical maximaization of I(w) are

I(w) - Pwly, xlsly,xl

yx

a (w) = X Dff(k,y,x)s(y,x)
awk y x

2
a IN) Dff(1,y,x) Dff(k,yx),- 2 Df(J,x) Df(k,x)
a.w LL pW(y,x) p(x)

jk y x w XW

where s(y,x) log(pw(y,x)/(pw(y)p(x))}, Dff(k,y,x) - * (y)f (x) -

f y)f(x) and Df(k,x) = fk (x) - f (x) (- Dff(k,y,x)). To apply the

ordinary optimization procedure I(w) is maximized with respect to

wlw2,**°,K_1; whereas wK is given by w. I - w, - .°.-WK.I°
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As a typical set of data distributions {fk()1 we adopted a set of
k

.* binomial distributions

x N-x

f k(x) = NCx pkx(1-pk)x,

where N and pk (k=1,2....K) were properly chosen for each particular

. example. The uniform distribution wk -1/K was used as the initial guess to

start the numerical optimization. An ordinary unconstrained numerical

optimization procedure was applied with a minor modification to satisfy the

non-negativity constraint wk ; 0. For the examples to be discussed in the

following the absolute values of the gradients at the solutions were at most

of the order 10- 6, except for those wk's which were zero where the

gradients took significant negative values.

The first example was designed to see the effect of relative location of

the data distributions on the determination of the minimum information prior

distribution. Three sets of data distributions were considered, each composed

of three data distributions, i.e., X=3. These were defined respectively by

(p1 O.I, p2=0.5, P3=0.9), (P1=0.2, p 270.5, P3-0.8) and (pl=0.3, p2=O.5,

P3=0.7). The parameter N of the binomial distribution was put equal to

20. The minimum information prior distributions obtained numerically are

given in Table I along with the corresponding pk's. The numbers were rounded

at the fourth decimal point.

Table 1. Effect Of Relative Location

wkWk Pk Wk Pk wk Pk

1 .347 .1 .409 .2 .500 .3
2 .307 .5 .182 .5 .000 .5
3 .347 .9 .409 .8 .500 .7
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The result of Table 1 shows that as the three data distributions come

closer to each other the distribution at the center loses its prior

probability. one might expect that if the data distributions are brought

further closer then eventually the prior probability will concentrate on the

distribution at the center. This does not happen for this example with

K - 3. However that type of behavior is observed locally in the example to be

discussed after the nexct where K =5

The second example was designed to check the effect of increased

dispersions of the data distributions. With K - 3 the pk's used to define

the binomial distributions were p1 - 0.25, P2 - 0.5 and P3 = 0.75. To get

distributions with successively increasing dispersions N was put equal to

80, 40, 30 and 20. The corresponding minimum information prior distributions

are given in Table 2 along with the pks.

Table 2. Effect of Increased Dispersions (K =3)

N
80 40 30 20 P

wl .340 .373 .410 .500 0.25
w2  .321 .255 .179 .000 0.5
w3.340 .373 .410 .500 0.75

It can be seen that as N is decreased, i.e., as the overlap of the data

distributions is increased, the minimum information prior distribution

deviates from the uniform distribution over the three data distributions to

the one over the two end distributions, just as in the case of the first

example.

The third example was chosen to illustrate further the complexity of the

possible shaipe of the minivui information prior distribution fo)r an

-9-



increased K, the number of possible data distributions. In this example

K was put equal to 5 and the pk'swere PPI0.I, P2 0.325, P3 0.5,

p4-0.675, P5-0.9. The value of N was successively put equal to 70, 60, 50,

40, 30, 25, 20, 10, and 5. The corresponding minimum information prior

distributions are given in Table 3 along with the pk's.

Table 3. Effect of Increased Dispersions (K - 5)

N

70 60 50 40 30 25 20 15 10 5

wI  .245 .253 .256 .262 .276 .289 .347 .361 .402 .500 .1
* w2  .196 .200 .244 .238 .224 .211 .000 .000 .000 .000 .325

w3  .117 .094 .000 .000 .000 .000 .307 .278 .195 .000 .5
w4  .196 .200 .244 .238 .224 .211 .000 .000 .000 .000 .675

w5  .245 .253 .256 .262 .276 .289 .347 .361 .402 .500 .9

The result of Table 3 clearly suggests that some clustering of data

distributions is required when there is significant overlap among the

distributions.

The fourth and the last example was designed to see the effect of the

difference of dispersions among the data distributions. Only two data

distributions were considered. The result is given in Table 4. It can be

seen that the data distributions defined with Pk - .5 which have larger

variances than those defined with Pk = .9 are receiving lower prior

probabilities. Due to the relatively good separations of the data

distributions the differences of the prior prababilities are rather smill.
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Table 4. Iffect Of The Difference of Dispersions

N

20 15 10 5 2 Pk

v .497 .494 .488 .471 .439 .5
.503 .506 .512 .529 .561 .9

5. DISCUSSION

The definition of the minimum information prior distribution introduced

in this paper is based on two principles. The first is to specify the purpose

of the inference based on the present data as the prediction of another

similar future observation. The second is to evaluate the deviation of

p(y,x) from p(y)p(x) by the lillback-Leibler information I(w). For the

discussion of the adequacy of the Mallback-Leibler information number as such

criterion, see, for example, Akaike (1982). Once the above two principles are

accepted the definition of the minimum information prior distribution follow

quite naturally.

Contrary to the usual preconception of the uniform distribution as the

non-informative prior distribution for a finite set of possible data

distributions, the numerical result has shown the necessity of careful

analysis of the mutual relation among the data distributions. At least in

principle the present analysis can be extended to more complex situations, if

only the necessary numerical procedure is properly developed.

if we followed Lindley (1956) we could have defined the minimum

information prior distribution as that wk which maximizes

wC) M~ vkdx(.ogk0 k f p( x)Jk

Such a prior distribution may be characterized as the one that keeps the
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probability distribution Pk(X)Wk over (x,k) as far away as possible from

the state of independence defined by p(x)wk. Since we have the relation

I (w) f p(x)(I p(klx)log [p(klx)] ldx,k Lwk

where p(klx) = fk(x)wk/p(x), the prior distribution that maximizes Io(w)

may also be characterized as the one that produces maximum expected change in

the transition from {wk }  to {p(klx)J.

This definition leads to a numerical optimization problem which is

simpler than that of our definition. The result corresponding to Table 3 is

given in Table 5 for this definition. The computations for the cases N - 40

and 30 were omitted. By comparing Table 5 with Table 3 we can see that the

present definition leads to a prior distribution which is closer to the

uniform distribution than that by our definition. This shows that the

predictive point of view demands more adaptive choice of the prior distri-

bution.

Table 5. Prior Distributions Maximizing I O(w)

N

70 6.) 50 40 30 25 20 15 10 5

W1  .226 .232 .239 .270 .284 .310 .363 .424 .1
w 2  .194 .193 .192 .178 .162 .117 .000 .000 .325
w3  .158 .149 .138 .103 .108 .147 .275 .151 .5

w4  .194 .193 .192 .178 .162 .117 .000 .000 .675
w5  .226 .232 .239 .270 .284 .310 .363 .424 .9

-12-



The maximal data information prior distribution introduced by Zeilner

(1977) is based on a modification of 10(w) to avoid the analytical

difficulty in handling 10 (w). The criterion is based on somewhat formal use

of the Shannon entropy and its technical meaning is rather unclear, unless ye

accept the Shannon entropy literally as a representation of the amount of

information. The reference prior distribution introduced by Bernardo (1979)

is somewhat similar to our minimum information prior distribution. However,

it is based on the concept of infinitely repeated observation of x, instead

of the one single observation in our definition, and inevitably leads to the

uniform prior distribution when the number of possible data distributions is

finite.

Since statistics is developed to handle problems in the real world, no

procedure can claim its superiority to others unless it is tested with real

applications. In that sense much remains to be done to clarify the practical

implication of the minimum information prior distribution. Nevertheless, the

clarity of its technical meaning and the reasonable behavior of the numerical

examples suggest the potential of the minimum information prior as a

conceptual resort in terminating the notorious indefinite digression in

Bayesian modeling.
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